
HOMEWORK 6

Due date: Monday of Week 7

Exercises: 2, 6, 7, 10, 11, pages 308-311
Exercises: 2, 3, 8, 9, 11, 12, 13, 14, pages 317-318,

In this week, we focused on normal matrix (normal operators) on complex vector spaces. Similar
results could be proved over real vector spaces once it is known that the corresponding eigenvalues
are real numbers.

Problem 1. Let A ∈ Matn×n(R) be symmetric, namely, A = At.

(1) Let a ∈ C be a root of χA = det(xIn − A) (namely, a is a complex eigenvalue of A). Show
that a ∈ R. (We showed in class that any eigenvalue of a self-adjoint linear operator is real.
This is a special case of that. Please repeat the proof here).

(2) Show that there is an orthogonal matrix P ∈ On(R) such that PTAP is diagonalizable.

This is the corollary in page 314 of the textbook. But we did not cover it. Mimic the proof of
the spectral decomposition of normal operators over C.

Our treatment of the spectral decomposition theorem of normal operators over C was taken from
Artin’s book, and it is a little bit different from the treatment given in the textbook. In particular,
Theorem 20, 21 were not covered in class. They are given in the following problem.

Problem 2. (1) Let V be a finite dimensional inner product space over C and let T ∈ End(V ).
Show that there is an orthonormal basis B of V such that [T ]B is upper triangular. (This is
Theorem 21, page 316.)

(2) Given a matrix A ∈ Matn×n(C). Show that there is a unitary matrix P ∈ U(n) and an
upper triangular matrix U such that A = PUP−1. This is called the Schur decomposition of
A.

(3) Let A ∈ Matn×n(C) be normal. If A = PUP−1 is the Schur decomposition of A, then U is
diagonal.

Remark 1. We have learned that any matrix A ∈ Matn×n(C) is triangulable; Schur decomposition
says that A is triangulable by a unitary matrix.

Let V = Matn×n(C) and define (A|B)C = tr(B∗A). We have seen that ( | )C define an inner
product on V when we view V as a vector space over C.

Problem 3. (1) Given A ∈ V = Matn×n(C). Show that any eigenvalue of A∗A is non-negative.
(The eigenvalues of A∗A are real because A∗A is self-adjoint).

(2) If every eigenvalue of A∗A = 0, then A = 0.

(Hint: Since A∗A is self-adjoint (in particular, normal), there exists an orthonormal basis B =
{α1, . . . , αn} of Cn such that each αi is an eigenvector. Let λi be the corresponding eigenvalue, then
A∗Aαi = λiαi. Then consider (Aα|Aα) = (α|A∗Aα) = . . . . Here ( | ) is the standard inner product
on Cn, not the one on V . We just lack enough notations. )

This problem gives another way to check tr(A∗A) = (A|A)C = 0 implies A = 0. We now view
V as a vector space over R (and write it as V/R to emphasize that it is a vector space over R) and
define (A|B)R = Re((A|B)C). Then ( | )R defines an inner product on V/R. This is easy to check.
(Check it!)

Problem 4. Let V/R = Matn×n(C) be the real vector space endowed with the inner product ( | )R
defined above. Let

W = {A ∈ Matn×n(C)|A = A∗} ⊂ V.
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(1) Show that W is an R subspace of V/R but not a C-subspace of V . Thus we have the orthogonal

decomposition V/R = W W⊥. Here W⊥ is of course defined w.r.t ( | )R.
(2) Given A ∈ V , we write A = A1 +A2, with

A1 =
A+A∗

2
, A2 =

A−A∗

2
.

Show that A1 ∈ W and A2 ∈ W⊥. Thus the orthogonal projection of V/R to W associated

to with the above orthogonal decomposition is ProjW (A) = 1
2 (A+A∗).

This problem might be helpful for solving Exercise 8, page 317.

Problem 5. Given A ∈ Matn×n(C). Suppose that AA∗ = A2. Show that A is self-adjoint.

(Hint: Use the decomposition in Problem 4.)

Let A ∈ Matn×n(C). Then the following are equivalent.

(1) A is normal, i.e., AA∗ = A∗A;
(2) (Aα|Aβ) = (A∗α|A∗β), for any α, β ∈ Cn, where ( | ) denotes the standard inner product

on Cn;
(3) ||Aα|| = ||A∗α||, for any α ∈ Cn;
(4) there exists a unitary matrix P ∈ U(n) and a diagonal matrix D such that A = PDP−1;

(5) A1 commutes with A2, where A1 = A+A∗

2 and A2 = A−A∗

2 ;
(6) there exists a polynomial f ∈ C[x] such that A∗ = f(A);
(7) let λ1, . . . , λn be the eigenvalues of A, then tr(A∗A) =

∑n
j=1 |λj |2;

(8) A∗ = AP for some unitary matrix P ∈ U(n). (Actually, the condition A∗ = AP for P ∈ U(n)
forces AP = PA.)

There are several other equivalent conditions, see this wiki-page if you can. Most of these were
proved in classes and HW problems, see Ex 8, 13, page 317-318 for (5) (6). The above equivalences
are for normal matrices. There is a similar version for normal operators. Try to translate the above
equivalences to normal operators over C. Normal operators over R is a little bit harder. We will
learn them in next Chapter.

Problem 6. (1) Prove the equivalence of (1) and (7).
(2) Prove the equivalence of (1) and (8).

Hint: For the equivalence of (1) and (7) use Schur decomposition. This is easy. For the equivalence
of (1) and (8), first show that the condition A∗ = AP for P ∈ U(n) implies AP = PA.

https://en.wikipedia.org/wiki/Normal_matrix

